= torch.rand((5, 28*28))
image = MLP(n_in=28*28, n_h=64, n_out=10)
mlp = mlp(image)
out print(out.shape)
torch.Size([5, 10])
MNISTDataModule (data_dir:str='~/Data/', train_val_test_split:List[float]=[0.8, 0.1, 0.1], batch_size:int=64, num_workers:int=0, pin_memory:bool=False, persistent_workers:bool=False)
A DataModule standardizes the training, val, test splits, data preparation and transforms. The main advantage is consistent data splits, data preparation and transforms across models.
Example::
import lightning.pytorch as L
import torch.utils.data as data
from pytorch_lightning.demos.boring_classes import RandomDataset
class MyDataModule(L.LightningDataModule):
def prepare_data(self):
# download, IO, etc. Useful with shared filesystems
# only called on 1 GPU/TPU in distributed
...
def setup(self, stage):
# make assignments here (val/train/test split)
# called on every process in DDP
dataset = RandomDataset(1, 100)
self.train, self.val, self.test = data.random_split(
dataset, [80, 10, 10], generator=torch.Generator().manual_seed(42)
)
def train_dataloader(self):
return data.DataLoader(self.train)
def val_dataloader(self):
return data.DataLoader(self.val)
def test_dataloader(self):
return data.DataLoader(self.test)
def teardown(self):
# clean up state after the trainer stops, delete files...
# called on every process in DDP
...
Type | Default | Details | |
---|---|---|---|
data_dir | str | ~/Data/ | path to source data dir |
train_val_test_split | typing.List[float] | [0.8, 0.1, 0.1] | train val test % |
batch_size | int | 64 | size of compute batch |
num_workers | int | 0 | num_workers equal 0 means that it’s the main process that will do the data loading when needed, num_workers equal 1 is the same as any n, but you’ll only have a single worker, so it might be slow |
pin_memory | bool | False | If you load your samples in the Dataset on CPU and would like to push it during training to the GPU, you can speed up the host to device transfer by enabling pin_memory. This lets your DataLoader allocate the samples in page-locked memory, which speeds-up the transfer |
persistent_workers | bool | False |
MLP (n_in:int, n_h:int, n_out:int, dropout:float=0.2)
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to
, etc.
.. note:: As per the example above, an __init__()
call to the parent class must be made before assignment on the child.
Type | Default | Details | |
---|---|---|---|
n_in | int | input dimension e.g. (H,W) for image | |
n_h | int | hidden dimension | |
n_out | int | output dimension (= number of classes for classification) | |
dropout | float | 0.2 | |
Returns | None |
Data module c.f. recipes/image/mnist
# load from config file
cfg = OmegaConf.load('../config/data/image/mnist.yaml')
print(cfg.datamodule)
datamodule = instantiate(cfg.datamodule)
datamodule.prepare_data()
datamodule.setup()
x = datamodule.data_test[0][0] # (C, H, W)
print(len(datamodule.data_test))
label = datamodule.data_test[0][1] #(int)
print("original shape (C,H,W): ", x.shape)
print("reshape (C,HxW): ", x.view(x.size(0), -1).shape)
print(x[0][1])
{'_target_': 'nimrod.image.datasets.MNISTDataModule', 'data_dir': '../data/image', 'train_val_test_split': [0.8, 0.1, 0.1], 'batch_size': 64, 'num_workers': 0, 'pin_memory': False, 'persistent_workers': False}
7000
original shape (C,H,W): torch.Size([1, 28, 28])
reshape (C,HxW): torch.Size([1, 784])
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.])
# using default Pytorch datasets
train_dataset = MNIST("../data/image", train=True, download=True, transform=ToTensor())
test_dataset = MNIST("../data/image", train=False, download=True, transform=ToTensor())
# train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# using nimrod datamodule
train_loader = datamodule.train_dataloader()
val_loader = datamodule.val_dataloader()
test_loader = datamodule.test_dataloader()
n_epochs = 1
for epoch in range(n_epochs):
model.train()
for images, labels in train_loader:
images = images.view(-1, 28*28)
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
# model expects input (B,H*W)
images = images.view(-1, 28*28).to(device)
images = images.to(device)
labels = labels.to(device)
# Pass the input through the model
outputs = model(images)
# Get the predicted labels
_, predicted = torch.max(outputs.data, 1)
# Update the total and correct counts
total += labels.size(0)
correct += (predicted == labels).sum()
# Print the accuracy
print(f"Epoch {epoch + 1}: Accuracy = {100 * correct / total:.2f}%")
Epoch 1: Accuracy = 79.99%
CPU times: user 3.39 s, sys: 466 ms, total: 3.86 s
Wall time: 3.58 s
MLP_PL (n_in:int, n_h:int, n_out:int, dropout:float=0.2, lr:float=0.001)
Hooks to be used in LightningModule.
Type | Default | Details | |
---|---|---|---|
n_in | int | input dimension e.g. (H,W) for image | |
n_h | int | hidden dimension | |
n_out | int | output dimension (= number of classes for classification) | |
dropout | float | 0.2 | dropout factor |
lr | float | 0.001 | learning rate |
# wrap simple model in modularized model
mlp_pl = MLP_PL(28*28, 64, n_out=10, dropout=0.2, lr=1e-3)
# fake input
b = torch.rand((5,1, 28*28))
# move model and data to hardware
model = mlp_pl.to(device)
b = b.to(device)
y_hat = mlp_pl(b)
print(y_hat.shape)
# real data
batch = next(iter(test_loader))
print(batch[0].shape, batch[1].shape)
print(model.predict_step(batch, 0))
torch.Size([5, 1, 10])
torch.Size([64, 1, 28, 28]) torch.Size([64])
tensor([1, 4, 5, 4, 5, 5, 1, 4, 5, 5, 5, 2, 4, 4, 5, 5, 5, 5, 4, 5, 1, 1, 5, 4,
1, 1, 1, 2, 1, 5, 1, 5, 1, 0, 9, 7, 6, 5, 4, 5, 5, 5, 4, 4, 5, 5, 5, 0,
5, 5, 6, 4, 5, 1, 4, 4, 1, 5, 4, 1, 4, 0, 5, 1])
To check an example script leveraging model training with configurable yaml files check recipes folder