= Encoder()
enc = Decoder()
dec = AutoEncoder(enc, dec)
a = torch.rand((10, 28*28))
batch = a(batch)
y print(y.shape)
torch.Size([10, 784])
AutoEncoder (encoder:nimrod.modules.Encoder, decoder:nimrod.modules.Decoder)
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to
, etc.
.. note:: As per the example above, an __init__()
call to the parent class must be made before assignment on the child.
Type | Details | |
---|---|---|
encoder | Encoder | Encoder layer |
decoder | Decoder | Decoder layer |
enc = Encoder()
dec = Decoder()
a = AutoEncoder(enc, dec)
batch = torch.rand((10, 28*28))
y = a(batch)
print(y.shape)
torch.Size([10, 784])
ds = MNISTDataset(data_dir='../data/image/')
dl = DataLoader(ds)
b = next(iter(dl))
print(len(b), b[0].shape, b[1].shape)
2 torch.Size([1, 1, 28, 28]) torch.Size([1])
AutoEncoderPL (autoencoder:__main__.AutoEncoder)
Hooks to be used in LightningModule.