device = get_device()
print(device)[12:05:37] INFO - Using device: mps
mps
Somewhat basic implemention of transformer model
Imagine you’re at position “it” in:
“The cat sat on the mat because it was tired.”
AttentionHead (embed_dim, head_size, block_size, dropout)
self attention head
| Details | |
|---|---|
| embed_dim | dimension of embedding | 
| head_size | size of attention head | 
| block_size | context size | 
| dropout | dropout rate | 
vocab_size = 10
batch_size = 5
embed_dim = 20
context_size = 8
dropout = 0.2
head_size = 16
# embedded input (float)
x = torch.randn(batch_size, context_size, embed_dim) #(B,T,C)
print(x.shape)
att = AttentionHead(embed_dim, head_size, context_size, dropout)
xx = att(x)
print(xx.shape) # (B, T, Head_size)torch.Size([5, 8, 20])
torch.Size([5, 8, 16])
MultiHeadAttention (num_heads, head_size, embed_dim, block_size, dropout)
multiple heads of self-attention in parallel
FeedFoward (embed_dim, dropout)
a simple linear layer followed by a non-linearity
TransformerBlock (embed_dim, n_head, block_size, dropout)
Transformer block: communication followed by computation
GPTLanguageModel (vocab_size, embed_dim, block_size, n_head, n_layer, dropout)
*Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.
.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.
:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool*
batch_size = 64 # how many independent sequences will we process in parallel?
block_size = 256 # what is the maximum context length for predictions?
eval_interval = 500
learning_rate = 3e-4
device = get_device()
eval_iters = 200
n_embd = 384
n_head = 6
n_layer = 6
dropout = 0.2
vocab_size = 46 #len(v)
m = GPTLanguageModel(vocab_size, n_embd, block_size, n_head, n_layer, dropout)[11:25:24] INFO - Using device: mps
device = 'cpu'
m = m.to(device)
x = torch.randint(vocab_size, (batch_size, block_size)).to(device)
logits, loss = m(x)
print(logits.shape)torch.Size([64, 256, 46])
# @torch.no_grad()
# def estimate_loss():
#     out = {}
#     model.eval()
#     for split in ['train', 'val']:
#         losses = torch.zeros(eval_iters)
#         for k in range(eval_iters):
#             X, Y = get_batch(split)
#             logits, loss = model(X, Y)
#             losses[k] = loss.item()
#         out[split] = losses.mean()
#     model.train()
#     return out# create a PyTorch optimizer
optimizer = torch.optim.AdamW(m.parameters(), lr=learning_rate)
acc_loss = []
max_iters = 1
for iter in range(max_iters):
    # sample a batch of data
    xb, yb = get_random_batch(torch.LongTensor(ids), block_size, batch_size, device=device)
    # evaluate the loss
    logits, loss = m(xb.to(device), yb.to(device))
    print(loss.item())
    acc_loss.append(loss.item())
    optimizer.zero_grad(set_to_none=True)
    loss.backward()
    optimizer.step()